Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1995). TEXSAN. Single Crystal Structure Analysis Software. Version 1.7-1. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Acta Cryst. (1996). C52, 2097-2100

Unusual Hetarynic Condensation of
 3-Bromo-2-ethoxypyridine with Diisopropyl Ketone Enolate in the Presence of a Complex Base

Sandra Ianelli, ${ }^{a}$ Mario Nardelli, ${ }^{a *}$ Daniele Belletti, ${ }^{a}$ Karine Pasquier ${ }^{b}$ and Paul Caubère ${ }^{b}$
${ }^{a}$ Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica Fisica, Università degli Studi di Parma, Centro di Studio per la Strutturistica Diffrattometrica del CNR, Viale delle Scienze 78, I-43100 Parma, Italy, and
${ }^{b}$ Laboratoire de Chimie Organique I, UA CNRS No. 457, Université de Nancy I, BP 239, 54506 Vandoeuvre-LesNancy CEDEX, France. E-mail: nardelli@ipruniv.cce.unipr.it

(Received 21 February 1996; accepted 17 April 1996)

Abstract

The crystal structure analysis of 1,8 -diethoxy- 9,10 -di-hydro-9-isopropyl-10,10-dimethyl-2,7-diaza-9-anthrol, $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$, obtained from the condensation of 3-bromo-2-ethoxypyridine with diisopropyl ketone enolate in the presence of the complex base $\mathrm{NaNH}_{2} .{ }^{\prime} \mathrm{BuONa}$, shows the tricyclic nature of the compound and allows interpretation of the reaction mechanism. The structure and conformation of the two independent molecules present in the asymmetric unit are compared with molecular modelling results.

Comment

In a preceding short communication (Jamart-Grégoire, Léger \& Caubère, 1990), it was established for the first time that ketone enolates are capable of condensation with 3,4-dihydropyridines generated from 3-bromopyridines and appropriate complex bases (Caubère, 1991, 1993) to give pyridinyl ketones and pyridinocyclobutenols. In a continuation of our exploration of this new route to pyridine derivatives, we undertook the study of the chemical behaviour of 3-bromo-2ethoxypyridine in such reactions and found that during its condensation with isopropyl ketone enolate in the
presence of the complex base $\mathrm{NaNH}_{2} \cdot{ }^{.} \mathrm{BuONa}$, an unusual result was observed (see scheme below).

Taking into account the results obtained from the arynic condensation of ketone enolates (Caubère, 1974, 1978, 1991, 1993), the formation of compounds (4) and (5) was expected. The formation of compound (6) was also observed, however, and this is rather unusual. Interestingly, we once observed such a reaction during the arynic condensation of diisopropyl ketone enolate with bromobenzene (Caubère \& Guillaumet, 1972).

Compounds (4) and (5) were easily identified from spectroscopic data, but characterization of compound (6) required X-ray analysis. The results show that, as in arynic chemistry, the alkoxy groups direct the nucleophilic attack in the meta position relative to the carbon bearing the O atom. We can thus propose the mechanism given in the scheme below for the formation of compound (6).

One of the two independent molecules is shown in Fig. 1. The geometric parameters were compared with those calculated for the free molecule by the TRIPOS molecular-modelling optimization procedure of the SYBYL package (Tripos Associates Inc., 1992) using default parameters. From the results of this comparison it was noticed that the largest differences were observed for: (i) bond distances in the isopropyl and ethyl groups, probably caused by the high thermal motion (or disorder) affecting these groups, (ii) bond angles at the junction of the isopropyl substituent on the central
ring and at the junctions of the ethoxy groups, and (iii) torsion angles involving atoms of the central ring and the isopropyl substituent.

Fig. 1. The structure of molecule A with 50% probability displacement ellipsoids.

Moreover, there were indications that the three-ring system is not rigid and deformations are produced both by intramolecular and packing interactions. A global quantitative evaluation of these deformations is also seen from the following values of the total puckering amplitudes (Cremer \& Pople, 1975) of the three rings (calc. is for the calculated model): ring (I) (C2, C3, N1, $\mathrm{C} 4, \mathrm{C} 5, \mathrm{C} 6$) molecule $A 0.021$ (7), molecule $B 0.047$ (7), calc. $0.049 \AA$ A ring (II) (C1, C2, C6, C7, C8, C12) molecule $A 0.161$ (6), molecule $B 0.163$ (6), calc. $0.160 \AA$; ring (III) (C8, C9, C10, N2, C11, C12) molecule A 0.065 (6), molecule $B 0.028$ (7), calc. $0.127 \AA$. The three rings are not coplanar, the dihedral angles formed by the weighted least-squares planes through them being (I)/(II) molecule A 5.1 (2), molecule B 9.1 (2), calc. 7.2°; (II)/(III) molecule $A 8.9$ (2), molecule $B 7.5$ (2), calc. 9.3°; (I)/(III) molecule $A 13.2$ (2), molecule $B 15.4$ (2), calc. 11.2°.

Analysis of the difference-potential-energy profiles, carried out with the ROTENER (Nardelli, 1991a) program, considered the ethoxy and the ethyl groups rotating about the $\mathrm{C}-\mathrm{O}$ bonds and the isopropyl group about the $\mathrm{C}-\mathrm{C}$ bond joining it to the ring in the free molecule. These profiles show that: (i) rotation about C3O 2 and $\mathrm{C} 11-\mathrm{O} 3$ does not involve any intramolecular hindrance, so that the orientation of the ethoxy groups is determined by packing van der Waals forces, (ii) rotation of the ethyl groups involves small energy barriers (ca $7-8 \mathrm{~kJ} \mathrm{~mol}^{-1}$), which indicates that their orientation is also conditioned mainly by intermolecular interactions,
and (iii) the orientation of the isopropyl group is mainly determined by intramolecular steric effects.

In both molecules, the hydroxyl group is involved in an intramolecular $\mathrm{Ol}-\mathrm{H} \cdots \mathrm{O} 3$ hydrogen-bonding interaction (Table 2) which determines the orientation of the group, so packing is only due to van der Waals interactions.

Experimental

To 8 equivalents of NaNH_{2} in tetrahydrofuran [5 ml for every 10 mmol of (1)], a solution of ${ }^{t} \mathrm{BuOH}$ in tetrahydrofuran (5 ml for every 10 mmol) was added at 318 K . The reaction medium was then stirred for 2 h at 318 K . To the complex base thus prepared was added slowly a solution of 2 equivalents of diisopropyl ketone in tetrahydrofuran (5 ml for every 10 mmol) at 308 K and the reaction medium stirred for a further 2 h at the same temperature. The bromo derivative (1) (1 equivalent) was then added slowly at 273 K to the reaction mixture, which was stirred until gas-phase chromatography indicated that no compound (1) remained. After hydrolysis on ice and extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the organic phase was dried over MgSO_{4} and the solvents removed under vacuum. The reaction products were isolated by flash chromatography and crystals for analysis were obtained from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=356.46$
Triclinic
$P \overline{1}$
$a=10.580(1) \AA$
$b=13.784$ (3) \AA
$c=15.218$ (3) \AA
$\alpha=66.59(1)^{\circ}$
$\beta=86.91(3)^{\circ}$
$\gamma=75.93(1)^{\circ}$
$V=1973.3(6) \AA^{3}$
$Z=4$
$D_{x}=1.200 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens-AED three-circle
diffractometer
$\theta / 2 \theta$ scans
Absorption correction: none
6662 measured reflections
6662 independent reflections
1432 observed reflections
$[I>2 \sigma(I)]$

Refinement

Refinement on F^{2}
$R(F)=0.0527$
$w R\left(F^{2}\right)=0.0643$
$S=1.524$
6655 reflections
484 parameters
H atoms riding

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=8-12^{\circ}$
$\mu=0.080 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.32 \times 0.26 \times 0.22 \mathrm{~mm}$
Colourless

$$
\begin{aligned}
& \theta_{\max }=25.03^{\circ} \\
& h=-12 \rightarrow 12 \\
& k=-16 \rightarrow 15 \\
& l=0 \rightarrow 18 \\
& 1 \text { standard reflection } \\
& \text { monitored every } 50 \\
& \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } \\
& \quad \text { SHELXL93 (Sheldrick, } \\
& \quad 1993 \text {) } \\
& \text { Extinction coefficient: } \\
& 0.0086 \text { (4) }
\end{aligned}
$$

```
\(w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0044 P)^{2}\right]\)
    where \(P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3\)
\((\Delta / \sigma)_{\max }=-0.001\)
```

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
O1A	-0.1288 (4)	0.3534 (3)	-0.2328 (3)	0.0596 (12)
O2A	-0.2082 (5)	0.3079 (4)	-0.3696 (3)	0.080 (2)
O3A	-0.0098 (4)	0.4610 (3)	-0.1671 (3)	0.0558 (12)
N1A	-0.4316 (7)	0.3494 (5)	-0.3893 (4)	0.081 (2)
N2A	-0.1282 (5)	0.6098 (5)	-0.1442 (4)	0.061 (2)
C1A	-0.1989 (6)	0.4601 (5)	-0.2918 (4)	0.049 (2)
C2A	-0.3262 (7)	0.4485 (5)	-0.3228 (4)	0.052 (2)
C3A	-0.3276 (8)	0.3692 (6)	-0.3619 (5)	0.068 (2)
C4A	-0.5459 (8)	0.4107 (7)	-0.3817 (5)	0.090 (3)
C5A	-0.5593 (7)	0.4919 (5)	-0.3483 (4)	0.070 (2)
C6A	-0.4492 (7)	0.5106 (6)	-0.3178 (4)	0.062 (2)
C7A	-0.4668 (6)	0.6012 (5)	-0.2831 (5)	0.061 (2)
C8A	-0.3428 (6)	0.6060 (5)	-0.2421 (4)	0.051 (2)
C9A	-0.3511 (6)	0.6836 (5)	-0.2025 (4)	0.064 (2)
C10A	-0.2422 (8)	0.6836 (5)	-0.1574 (4)	0.071 (2)
C11A	-0.1223 (7)	0.5388 (5)	-0.1836 (4)	0.052 (2)
C12A	-0.2239 (6)	0.5352 (5)	-0.2374 (4)	0.044 (2)
C13A	-0.1227 (6)	0.5070 (5)	-0.3853 (4)	0.063 (2)
C14A	-0.1930 (6)	0.6222 (5)	-0.4524 (4)	0.088 (2)
C15A	0.0182 (6)	0.5069 (5)	-0.3689 (4)	0.094 (3)
C16A	-0.5646 (6)	0.5834 (5)	-0.2020 (4)	0.101 (3)
C17A	-0.5267 (6)	0.7121 (5)	-0.3659 (4)	0.093 (2)
C18A	-0.2038 (7)	0.2413 (5)	-0.4229 (5)	0.091 (3)
C19A	-0.0682 (6)	0.1816 (5)	-0.4215 (5)	0.116 (3)
C20A	0.0973 (6)	0.4671 (5)	-0.1177 (4)	0.072 (2)
C21A	0.2097 (5)	0.3750 (5)	-0.1123 (4)	0.086 (2)
O1B	-0.4418 (4)	0.0730 (3)	0.2655 (2)	0.0592 (12)
O2B	-0.5698 (4)	0.0524 (3)	0.1374 (3)	0.0618 (13)
O3B	-0.2579 (4)	0.0152 (3)	0.4020 (3)	0.0651 (13)
N1B	-0.5379 (5)	0.1512 (4)	-0.0189 (4)	0.063 (2)
N2B	-0.1074 (5)	0.1177 (4)	0.3622 (4)	0.068 (2)
C1B	-0.3310 (6)	0.0584 (5)	0.2109 (4)	0.043 (2)
C2B	-0.3757 (6)	0.1173 (5)	0.1046 (4)	0.045 (2)
C3B	-0.4937 (6)	0.1085 (5)	0.0713 (5)	0.050 (2)
C4B	-0.4648 (7)	0.2076 (5)	-0.0839 (5)	0.067 (2)
C5B	-0.3508 (6)	0.2267 (5)	-0.0607 (4)	0.061 (2)
C6B	-0.3078 (6)	0.1824 (5)	0.0353 (5)	0.048 (2)
C7B	-0.1894 (6)	0.2128 (5)	0.0602 (4)	0.054 (2)
C8B	-0.1614 (6)	0.1744 (5)	0.1665 (4)	0.053 (2)
C9B	-0.0655 (6)	0.2098 (5)	0.1975 (5)	0.070 (2)
C10B	-0.0450 (6)	0.1803 (5)	0.2933 (5)	0.077 (2)
$C 11 B$	-0.1954 (6)	0.0813 (5)	0.3317 (5)	0.052 (2)
C12B	-0.2279 (5)	0.1060 (5)	0.2348 (5)	0.045 (2)
C13B	-0.2693 (6)	-0.0663 (5)	0.2385 (5)	0.071 (2)
C14B	-0.1569 (6)	-0.0891 (4)	0.1778 (4)	0.097 (3)
C15B	-0.3505 (7)	-0.1383 (5)	0.2552 (6)	0.192 (5)
C16B	-0.2172 (5)	0.3408 (4)	0.0147 (4)	0.075 (2)
C17B	-0.0693 (5)	0.1692 (4)	0.0120 (4)	0.076 (2)
C18B	-0.6875 (6)	0.0415 (5)	0.1008 (4)	0.071 (2)
C19B	-0.7523 (5)	-0.0245 (5)	0.1874 (4)	0.093 (2)
C20B	-0.2276 (7)	-0.0034 (5)	0.4998 (4)	0.089 (2)
C21B	-0.3117 (6)	-0.0647 (6)	0.5618 (4)	0.116 (3)

Atomic scattering factors from International Tables
 for Crystallography (1992, Vol. C)

$\mathrm{N} 2 A-\mathrm{C} 10 \mathrm{~A}$	1.340 (9)	$\mathrm{N} 2 B-\mathrm{Cl} 10 B$	1.328 (9)
$\mathrm{N} 2 A-\mathrm{C} 11 A$	1.323 (11)	$\mathrm{N} 2 B-\mathrm{C} 11 B$	1.338 (11)
$\mathrm{C} 1 A-\mathrm{C} 2 A$	1.516 (11)	$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 B$	1.534 (8)
$\mathrm{C} 1 A-\mathrm{Cl} 2 A$	1.532 (11)	$\mathrm{C} 1 B-\mathrm{Cl} 12 B$	1.527 (10)
$\mathrm{C} 1 A-\mathrm{Cl} 3 \mathrm{~A}$	1.578 (9)	$\mathrm{C} 1 B-\mathrm{C} 13 B$	1.571 (9)
C2A-C3A	1.441 (12)	C2B-C3B	1.422 (10)
$\mathrm{Cl1A}-\mathrm{Cl2A}$	1.409 (11)	$\mathrm{C} 11 \mathrm{~B}-\mathrm{Cl2B}$	1.418 (10)
$\mathrm{C} 3 A-\mathrm{O} 2 A-\mathrm{C} 18 A$	117.2 (6)	$\mathrm{C} 3 \mathrm{~B}-\mathrm{O} 2 B-\mathrm{C} 18 B$	116.7 (5)
C11A-O3A-C20A	118.6 (5)	$\mathrm{C} 11 B-\mathrm{O} 3 B-\mathrm{C} 20 B$	117.2 (5)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{N} 1 A-\mathrm{C} 4 A$	116.2 (8)	$\mathrm{C} 3 B-\mathrm{N} 1 B-\mathrm{C} 4 B$	116.6 (6)
C10A-N2A-C11A	115.8 (6)	$\mathrm{C} 10 B-\mathrm{N} 2 B-\mathrm{C} 11 B$	115.0 (6)
$\mathrm{C} 2 A-\mathrm{Cl} A-\mathrm{Cl} 2 A$	110.9 (6)	$\mathrm{C} 2 B-\mathrm{C} 1 B-\mathrm{C} 22 B$	111.0 (5)
$\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 6 A$	125.2 (7)	$\mathrm{C} 1 B-\mathrm{C} 2 B-\mathrm{C} 6 B$	123.8 (5)
C3A-C $2 A-\mathrm{C} 6 \mathrm{~A}$	113.9 (7)	$\mathrm{C} 3 B-\mathrm{C} 2 B-\mathrm{C} 6 B$	115.4 (6)
$\mathrm{N} 1 A-\mathrm{C} 3 A-\mathrm{C} 2 A$	126.7 (7)	$\mathrm{N} 1 B-\mathrm{C} 3 B-\mathrm{C} 2 B$	125.7 (6)
$\mathrm{N} 1 A-\mathrm{C} 4 A-\mathrm{C} 5 A$	123.5 (8)	$\mathrm{N} 1 B-\mathrm{C} 4 B-\mathrm{C} 5 B$	123.5 (7)
C4A-C5A-C6A	119.8 (7)	C4B-C5B-C6B	118.6 (6)
C2A-C6A-C5A	119.8 (7)	$\mathrm{C} 2 B-\mathrm{C} 6 B-\mathrm{C} 5 B$	120.0 (6)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	121.6 (7)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 6$ - C 7 B	122.3 (6)
C6A-C7A-C8A	113.8 (6)	$\mathrm{C} 6 B-\mathrm{C} 7 B-\mathrm{C} 8 B$	114.0 (5)
$\mathrm{C} 7 \mathrm{~A}-\mathrm{C} 8 \mathrm{~A}-\mathrm{C} 12 A$	123.5 (6)	$\mathrm{C} 7 B-\mathrm{C} 8 B-\mathrm{C} 12 B$	122.4 (6)
C8A-C9A-C10A	119.1 (6)	$\mathrm{C} 8 B-\mathrm{C} 9 B-\mathrm{C} 10 B$	119.0 (6)
N2A-C10A-C9A	123.8 (7)	$\mathrm{N} 2 B-\mathrm{C} 10 B-\mathrm{C} 9 B$	125.4 (7)
$\mathrm{N} 2 A-\mathrm{C} 11 \mathrm{~A}-\mathrm{C} 12 \mathrm{~A}$	125.8 (6)	$\mathrm{N} 2 B-\mathrm{C} 11 B-\mathrm{C} 12 B$	125.9 (6)
$\mathrm{C} 8 A-\mathrm{C} 12 A-\mathrm{C} 11 A$	116.5 (6)	$\mathrm{C} 8 B-\mathrm{Cl} 2 B-\mathrm{C} 11 B$	115.9 (6)
$\mathrm{C} 1 A-\mathrm{C} 12 A-\mathrm{C} 8 A$	122.7 (6)	$\mathrm{C} 1 B-\mathrm{Cl} 2 B-\mathrm{C} 8 B$	124.1 (6)
$\mathrm{C} 3 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 18 \mathrm{~A}-\mathrm{C} 19 \mathrm{~A}$		-179.3 (6)	
$\mathrm{C} 18 \mathrm{~A}-\mathrm{O} 2 \mathrm{~A}-\mathrm{C} 3 A-\mathrm{N} 1 A$		11.2 (10)	
$\mathrm{C} 11 A-\mathrm{O} 3-\mathrm{C} 20 A-\mathrm{C} 21 A$		-177.8(5)	
C20A-O	$-\mathrm{C} 11 A-\mathrm{N} 2 A$	-6.2 (9)	
$\mathrm{Cl} 2 \mathrm{~A}-\mathrm{C}$	$-\mathrm{Cl} 3 \mathrm{~A}-\mathrm{Cl} 14 A$	-56.4 (7)	
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C}$	$-\mathrm{C} 13 A-\mathrm{C} 15 A$	-170.1 (6)	
$\mathrm{C} 2 \mathrm{~A}-\mathrm{Cl}$	$-\mathrm{Cl} 2 A-\mathrm{Cl1A}$	165.6 (6)	
$\mathrm{C} 12 \mathrm{~A}-\mathrm{C}$	$-\mathrm{C} 2 A-\mathrm{C} 3 A$	-170.3 (6)	
C5A-C6	$-\mathrm{C} 7 A-\mathrm{C} 8$ A	173.8 (6)	
C6A-C7	C8A-C9A	-176.2 (6)	
$\mathrm{C} 3 \mathrm{~B}-\mathrm{O} 2$	C18B-C19B	179.2 (5)	
C18B-	- $\mathrm{C} 3 B-\mathrm{N} 1 B$	3.0 (8)	
C11B-O	C20B-C21B	174.0 (6)	
$\mathrm{C} 20 \mathrm{~B}-\mathrm{O}$	- $\mathrm{C} 11 B-\mathrm{N} 2 B$	3.1 (8)	
$\mathrm{Cl} 2 \mathrm{~B}-\mathrm{C}$	- $13 B-\mathrm{Cl} 14 B$	-66.0 (7)	
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1$	$-\mathrm{C} 13 B-\mathrm{C} 15 B$	-79.5 (8)	
$\mathrm{C} 2 \mathrm{~B}-\mathrm{C}$	$-\mathrm{C} 12 B-\mathrm{C} 11 B$	165.5 (6)	
$\mathrm{C} 12 \mathrm{~B}-\mathrm{C}$	- $22 B-\mathrm{C} 3 B$	-162.7 (6)	
C 5 B-C	$-\mathrm{C} 7 B-\mathrm{C} 8 B$	171.7 (6)	
$\mathrm{C} 6 \mathrm{~B}-\mathrm{C}$	-C 8 - C 9 B	-171.8(6)	
$D-\mathrm{H} \cdots A$	H. . A	D. . A	D-H. . A
O1A-H1A..O3A	2.03 (4)	2.646 (7)	132 (2)
$\mathrm{O1} B-\mathrm{H} 1 B \cdots \mathrm{O} 3 B$	1.99 (2)	2.665 (6)	139 (1)

The correctness of the choice of the space group was checked using the TRACER (Lawton \& Jacobson, 1965), NEWLAT (Mugnoli, 1985), LEPAGE (Spek, 1988) and MISSYM (Le Page, 1987) programs, and the SYMMOL routine of the latest version of PARST (Nardelli, 1995). The high proportion of 'unobserved' data is due to high thermal motion, which may mask some disorder; all measured data were used for refinement. H atoms attached to C atoms were placed geometrically and $\mathrm{O}-\mathrm{H}$ according to a difference synthesis, but with $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{C}-\mathrm{O}-\mathrm{H}=109.5^{\circ}$ constraints. In the riding-model refinement, methyl and OH groups had torsional freedom and $U(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}$ or O$)$.
Data collection: local programs (Belletti, Ugozzoli, Cantoni \& Pasquinelli, 1979). Cell refinement: LQPARM (Nardelli \& Mangia, 1984). Data reduction: local programs. Program(s) used to solve structure: SIR92 (Altomare et al. 1994). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEP (Johnson, 1965), ZORTEP (Zsolnai \& Pritzkow, 1994). Software used to prepare material for publication: PARST (Nardelli, 1983), PARSTCIF (Nardelli, 1991b).

Financial support from the European Community Commission under contract N. SC1000657 is gratefully acknowledged.

Lists of structure factors, anisotropic displacement parameters, H atom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: CF1097). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435436.

Belletti, D., Ugozzoli, F., Cantoni, A. \& Pasquinelli, G. (1979). Gestione on Line di Diffrattometro a Cristallo Singolo Siemens AED con Sistema General Automation Jumbo 220. Internal Reports $1-3 / 79$. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.
Caubère, P. (1974). Acc. Chem. Res. 7, 301-308.
Caubère, P. (1978). Top. Curr. Chem. 73, 50-124.
Caubère, P. (1991). Rev. Heteroat. Chem. 4, 78-139.
Caubère, P. (1993). Chem. Rev. 93, 2317-2334.
Caubère, P. \& Guillaumet, G. (1972). Bull. Soc. Chim. Fr. pp. 46434649.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Jamart-Grégoire, B., Léger, C. \& Caubère, P. (1990). Tetrahedron Lett. 31, 7599-7602.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Lawton, S. L. \& Jacobson, R. A. (1965). The Reduced Cell and Its Crystallographic Applications. Ames Laboratory. Available from the Clearing House for Federal Scientific and Technical Information, National Bureau of Standards, US Department of Commerce, Springfield, Virginia, USA.
Le Page, Y. (1987). J. Appl. Cryst. 20, 264-269.
Mugnoli, A. (1985). J. Appl. Cryst. 18, 183-184.
Nardelli, M. (1983). Comput. Chem. 7, 95-98.
Nardelli, M. (1991a). QCPE Bull. 11, p. xvii, QCMP097.
Nardelli, M. (1991b). PARSTCIF. Program for Creating a CIF from the Output of PARST. University of Parma, Italy.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Nardelli, M. \& Mangia, A. (1984). Ann. Chim. (Rome), 74, 163-174.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1988). J. Appl. Cryst. 21, 578-579.
Tripos Associates Inc. (1992). SYBYL. Molecular Modelling Software. Version 6.0. Tripos Associates Inc., 1699 S. Hanley Rd., Suite 303, St. Louis, Missouri 63144-2913, USA.
Zsolnai, L. \& Pritzkow, H. (1994). ZORTEP. ORTEP modified for PC. University of Heidelberg, Germany.

4-(4-Chlorophenyl)-4-hydroxy- N, N-di-methyl- α, α-diphenyl-1-piperidinebutanamide N-Oxide Hydrate (Loperamide N-Oxide Hydrate) \dagger

Oswald M. Peeters, Norbert M. Blaton and Camiel J. De Ranter
Laboratorium voor Analytische Chemie en Medicinale Fysicochemie, Faculteit Farmaceutische Wetenschappen, Katholieke Universiteit Leuven, Van Evenstraat 4, B-3000 Leuven, Belgium. E-mail: maurice.peeters@farm. kuleuven.ac.be

(Received 29 March 1996; accepted 7 May 1996)

Abstract

The crystal structure of the title compound, $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{Cl}-$ $\mathrm{N}_{2} \mathrm{O}_{3} .2 .25 \mathrm{H}_{2} \mathrm{O}$, has been determined. The three C N (piperidyl) bond lengths reflect the tetracovalency of the piperidine N atom. A strong intermolecular hydrogen bond between the hydroxyl and the N-oxide of neighbouring molecules forms endless chains in the \mathbf{b} direction of the $C 2 / c$ space group. The positions of the water molecules are partially occupied.

Comment

Loperamide N-oxide, (I), is a prodrug of loperamide, a specific long-acting antidiarrhoeal drug. In order to compare the structure of loperamide N -oxide with that of loperamide itself (Germain, Declercq, Van Meersche \& Koch, 1977), its crystal structure has been determined.

(I)

The conformation of the molecule and the atomic numbering scheme are given in Fig. 1. The overall conformation of (I) is very similar to that of loperamide. Corresponding torsion angles agree within 4° except for the N11-C16-C17-C18 torsion angle with values of 174.2 and $-156.1(2)^{\circ}$ for loperamide and its N-oxide, respectively. The presence of the N-oxide lengthens the $\mathrm{N}-\mathrm{C}$ bonds from a mean value of $1.468 \AA$ in loperamide to a mean value of $1.505 \AA$ in (I). These values agree well with the mean values of 1.471 and $1.509 \AA$ found in 1,2-dipiperidinoethane mono- N-oxide

[^0]
[^0]: \dagger Internal code of the Janssen Research Foundation: R58425.

